Home > Knowledge > Content

Introduction of Fiberglass and Production


Glass fibers have been produced for centuries, but the earliest patent was awarded to the Prussian inventor Hermann Hammesfahr (1845–1914) in the U.S. in 1880.

Mass production of glass strands was accidentally discovered in 1932 when Games Slayter, a researcher at Owens-Illinois, directed a jet of compressed air at a stream of molten glass and produced fibers. A patent for this method of producing glass wool was first applied for in 1933. Owens joined with the Corning company in 1935 and the method was adapted by Owens Corning to produce its patented "Fiberglas" (spelled with one "s") in 1936. Originally, Fiberglas was a glass wool with fibers entrapping a great deal of gas, making it useful as an insulator, especially at high temperatures.



A suitable resin for combining the fiberglass with a plastic to produce a composite material was developed in 1936 by du Pont. The first ancestor of modern polyester resins is Cyanamid's resin of 1942. Peroxide curing systems were used by then. With the combination of fiberglass and resin the gas content of the material was replaced by plastic. This reduced the insulation properties to values typical of the plastic, but now for the first time, the composite showed great strength and promise as a structural and building material. Many glass fiber composites continued to be called "fiberglass" (as a generic name) and the name was also used for the low-density glass wool product containing gas instead of plastic.


Ray Greene of Owens Corning is credited with producing the first composite boat in 1937 but did not proceed further at the time due to the brittle nature of the plastic used. In 1939 Russia was reported to have constructed a passenger boat of plastic materials, and the United States a fuselage and wings of an aircraft. The first car to have a fiber-glass body was a 1946 prototype of the Stout Scarab, but the model did not enter production.




The process of manufacturing fiberglass is called pultrusion. The manufacturing process for glass fibers suitable for reinforcement uses large furnaces to gradually melt the silica sand, limestone, kaolin clay, fluorspar, colemanite, dolomite and other minerals until a liquid forms. It is then extruded through bushings, which are bundles of very small orifices (typically 5–25 micrometres in diameter for E-Glass, 9 micrometres for S-Glass).


These filaments are then sized (coated) with a chemical solution. The individual filaments are now bundled in large numbers to provide a roving. The diameter of the filaments, and the number of filaments in the roving, determine its weight, typically expressed in one of two measurement systems:yield, or yards per pound (the number of yards of fiber in one pound of material; thus a smaller number means a heavier roving). Examples of standard yields are 225yield, 450yield, 675yield.tex, or grams per km (how many grams 1 km of roving weighs, inverted from yield; thus a smaller number means a lighter roving). Examples of standard tex are 750tex, 1100tex, 2200tex.


These rovings are then either used directly in a composite application such as pultrusion, filament winding (pipe), gun roving (where an automated gun chops the glass into short lengths and drops it into a jet of resin, projected onto the surface of a mold), or in an intermediary step, to manufacture fabrics such as chopped strand mat (CSM) (made of randomly oriented small cut lengths of fiber all bonded together), woven fabrics, knit fabrics or unidirectional fabrics.


Apr 21, 2021